

Watershed Modeling Goals

- Provide estimates of watershed loading of sediment and nutrients to Lake Tahoe
- Provide input to the Lake Clarity Model
- Evaluate management scenarios to meet loading targets
- Estimate TMDL allocation components

Integration of research results

Relationship to Other Tasks

Evolution of the Watershed Model

Phase I

Model Scoping with Workgroup Input

Data Compilation (historic, ongoing)

Preliminary Model Configuration and Calibration

Hydrology

Sediment

Nutrients

Preliminary TMDL Analysis

Phase II

Model Reconfiguration Using Research Results
Model Recalibration and Validation/Verification
Loading Alternative Evaluation
TMDL Applysis

TMDL Analysis

Watershed Model Project Timeline

TASK		2002 2003					2004				2005				Needs from Other Group	
IASK	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4		
1. Hydrology Model Development																
1.1 Subwatershed Delineation															s/w monitoring site delineations, Tahoe Basin subcatchments	
1.2 Meteorological Data Processing												/115			meteorological grid, time series data files @ ground surface (either complete or example/partial)	
1.3 Calibration							4.3		47						groundwater analysis results (flow) flow gage data, stream cross-sections, BMP hydrologic effects	
2. Sediment Model Development						SILE-	Sorge.			1,12	£90		Ma			
2.1 Data Compilation					1					-	20	413		4.	tributary and historic s/w monitoring data	
2.2 Model Formulation Selection									100				- 2	100	stream channel erosion results, fine particles analysis results, input req'mts to lake clarity model	
2.3 Calibration							923	E			-	- 3	- 3	3-	calibration data set selection	
3. Nutrient Model Development		- 14										- 48	2455		1.00	
3.1 Data Compilation			ì				**					Stat &			historical tributary and s/w monitoring data, s/w monitoring data	
3.2 Model Formulation Selection				19						1		7.00		570		
3.3 Calibration				Q-38	TAUP.				350		1	200			calibration data set selection	
4. Preliminary TMDL Analysis	0 2			-72	1			BACK.		17500	le/all	6236	LKO, ST	-	The second secon	
5. Model Refinement and Verification		-		-30		100										
5.1 Model Refinement - Nutrients	1011														wq statistical analysis results, atmospheric deposition analysis results	
5.2 Model Refinement - BMPs	7				120		2013		40		57.90	MELS.	21	6.55	BMP analysis results	
5.3 Verification	19.3						633	13.00		THE ST		(0.867)			s/w monitoring data	
6. TMDL Analysis	PAGE.	THE R	Jan-			4/26		3330					1		ALC:	

Model Selection

 Apply EPA's Loading Simulation Program in C++ (LSPC), a dynamic watershed model, to simulate hydrologic processes, erosion and sediment transport, and nutrient accumulation/transport for the Tahoe Watershed

LSPC

- Loading Simulation Program, C++
- Streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for pervious and impervious land flow and pollutant transport, coded with Visual C++ in an object-oriented environment
- Visual C++ programming architecture allows for seamless integration with modern-day, widely available software such as Microsoft Access, and Excel
- Key watershed modeling component of the TMDL Toolbox (developed and maintained by EPA Region 4 with support from Tetra Tech)
- TMDLs successfully developed in AL, MS, SC, GA, CA, KY, TN, WV, VA, MD, AZ, OH, Puerto Rico, and U.S.V.I.

TMDL Toolbox Overview

- Collection of models, modeling tools, and databases that have been used historically in determination of TMDLs
- Facilitates exchange of data among all components
- Developed modularly to support future expansion
- Public domain

Key Considerations Used in the Design of LSPC

- Potential for very large-scale modeling (e.g. HUC-wide or Statewide)
- Increase efficiency of model setup and execution (eliminate unnecessary, repetitive user input, hence minimizes the chance of human error)
- Simplify model output
- Tailored for TMDL development
 - Handles potential nonpoint and point sources
 - Calculation tools
 - Archival system
- Highly adaptable design and programming architecture that allows for modular additions and/or improvements (e.g., hydraulic modification, BMP simulation)

LSPC Modules

- GIS
- Data management
- Data inventory
- Data analysis
- Watershed model
- Model results analysis

Hydrology Model Development

TASK		2002		2003				2004				2005			
		Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	
1. Hydrology Model Development									11.16	100					
1.1 Subwatershed Delineation															
1.2 Meteorological Data Processing		445		100							14		1		
1.3 Calibration			la de						A TAN	A TO			36		

Key considerations and data needs:

- Subwatershed delineation
 - Full basin for TMDL analysis (existing Tahoe subwatersheds)
 - Site-level for calibration (monitoring site delineations)
- Landuse category selection

SUBWATERSHED DELINEATION

- Subdivision of the watershed intro discrete components
- Delineation based on:
 - elevation (topographic data)
 - stream connectivity
 - location of flow and water quality monitoring stations
- Each subwatershed is modeled with 1 representative stream
 - streams are assumed trapezoidal
- Each subwatershed is modeled with 1 representative meteorological time series

Land Simulation

- Each subwatershed is represented by multiple land units (based on landuse coverages)
- Land units are either pervious or impervious
- Model algorithms are run for each individual land unit

Watershed Loading Schematic

- Tributaries converging to discharge to lake
- Direct drainage to lake

- 5 Urban
- 4 Rural

Watershed Loading Schematic

- Tributaries converging to discharge to lake
- Direct drainage to lake

5 Urban

4 Rural

2 SCALES OF DELINEATION

- 1. Subwatershed delineation for calibration to historical and ongoing monitoring sites
- 2. Subwatershed delineation for entire Tahoe Basin
- Calibrated model parameters from the calibration subwatersheds will be validated at a larger scale using the entire Tahoe Basin subwatershed distribution

Subwatershed Delineation

- Need to define a suitable level of segmentation
- Consistent with other research

Factors to Consider

Watershed

- Land use/Sources
- Soils
- Topography/elevation
- Weather station location
- Monitoring points
- Existing management

Management

- Planning
- Regulatory
- Impact
- Alternatives analysis

Elevation Considerations

- Subdivide incoming stream basins based on elevation
- Impacts hydrology processes (snowmelt and atmospheric variability with elevation)

Existing Coverages

- 597 subwatersheds in TRPA coverage
- Each stream segment is subdelineated
- Possible starting point (will likely aggregate many individual subwatersheds)

Calibration Delineations

 Different scale than for fullbasin analysis

Stormwater Monitoring Sites

Existing Subwatershed Coverage

Landuse Selection

• What is the suite of land use categories that will be described individually?

Factors to Consider

- Predominant Landuse
- Type of Impacts
- Management categories
- Future Land Use Conversion
- Data Availability
- Resources

Categorization for SW Monitoring

- Single family residential 5 sites
- Multi family residential 2 sites
- Commercial 1 site
- Communications/utilities none (minimal area)
- Institutional none (minimal area)
- Agriculture/livestock none (minimal area)
- Transportation 6 CalTrans sites
- Recreation/open space 1 site
- Mixed urban − 2 sites
- Bare none (minimal area)
- Vegetated 4 sites (1 completely vegetated, others are divided with urban categories)

Draft Landuse Categories

- Residential
 - Single family residential
 - Multi family residential
- Commercial
- Mixed urban (including communications, institutional)
- Transportation
 - Primary roads
 - Secondary roads
- Recreation/open space/bare
- Vegetated
 - Undisturbed
 - Moderately disturbed
 - Highly disturbed
 - Burned zones

Hydrology Model Development

TASK		2002		2003				2004				2005			
		Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	
1. Hydrology Model Development								М	11.16						
1.1 Subwatershed Delineation									2013					422	
1.2 Meteorological Data Processing															
1.3 Calibration									人				7.5		

Data Needs:

- Meteorological grid
- Hourly time series data files (at ground surface),
 preferably in text files

Either complete or partial example dataset

Meteorological Data Processing

Subbasin Area-Weighting

- Subbasin 1 = 0.4 c + 0.6 d
- Subbasin 2 =

$$0.4a + 0.1b + 0.3c + 0.2d$$

• Subbasin 3 =

$$0.7 b + 0.3 d$$

Subwatershed

3 km meteorological grid

Weather Data Application

Hydrology

- Hydrologic Components:
 - Precipitation
 - Interception
 - Evapotranspiration
 - Overland flow
 - Infiltration
 - Interflow
 - Subsurface storage
 - Groundwater flow
 - Groundwater loss

Source: Stanford Watershed Model

Land Simulation Considerations

TWO POSSIBLE METHODS:

- Energy Balance
 - COE, 1956; Anderson Crawford, 1964; Anderson, 1968
- Temperature Index or "Degree-day"
 - Rango and Martinec, 1995

Land Simulation Considerations

Land Simulation

WATER

ATEM

SNOW

Weather Data	Energy Balance	Degree Day
Precipitation	Required	Required
Air Temperature	Required	Required
Solar Radiation	Required	Not Used
Dewpoint	Required	optional
Wind Speed	Required	Not Used
Cloud Cover	optional	Not Used

Snowmelt Schematic

Runoff

nterflow

Surface runoff - overland flow

Interflow - flow through surficial layers of soil

Baseflow - groundwater seepage from springs and

raquifers directly to the stream channel

Stream Hydraulics

- Completely mixed reach (single layer)
- Unidirectional flow
- Flow routing by kinematic wave or storagerouting method (i.e. conservation of momentum not considered)
- Requires function table (FTable) for depthvolume-discharge relationship for each reach.
- Precipitation/evaporation accommodated
- Calculates outflow, depth, volume, surface area, and selected auxiliary variables (velocity, cross-sectional area, bed shear velocity/stress)

Flow Diagram for HYDR Section of RCHRES

Function Table

- Area (surface) =Top width * length
- Volume = Cross sectional area * length
- Outflow can be withdrawal, spillway discharge or outflow at the downstream end of a reach
- Stream Flow = Cross sectional area * velocity

1	Depth	Area	Volume	Outflow
	0.0	0.0	0.0	0.0
	0.08	10.81	0.86	2.12
	0.80	11.36	8.84	98.09
	1.20	11.68	13.45	192.51

Hydrology Calibration

- Analytical Considerations
 - Annual water balance
 - Seasonal / monthly distribution
 - Distribution of hydrograph components
 - Storm flow
 - Base flow
 - Snowfall / snowmelt influence

Watershed Loading Schematic

- Tributaries converging to discharge to lake
- Direct drainage to lake

5 Urban

4 Rural

Hydrology Calibration Methods

- Hourly/Daily/Monthly Timeseries
- Monthly Scatter/Balance Plots
- Seasonal Plots (Multi-Year Composites)
- Flow Duration Curves
- Flow Accumulation Curves
- Cumulative Error Statistics
- Hydrograph Components

Issues With the Water Balance

 Fine-tuning the watershed model minimizes the propogation of error in the reservoir

Sediment Model Development

TASK	20	2002		20	003			20	004		2005			
	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	3 Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
2. Sediment Model Development											M ASS		3	1997
2.1 Data Compilation			31				7.0		Salar.					2473
2.2 Model Formulation Selection			250	150				4416	7 8					
2.3 Calibration			*	1		That						Mossill.		

Key considerations and data needs:

- Bank erosion versus upstream loads (CONCEPTS/AGNPS results)
- Particle-size distribution

Sediment Load Estimation

- 2 potential options
- Option 1 (first phase of modeling)
 - Use LSPC algorithms for land erosion and sediment transport to predict overall sediment load
 - Represent suite of particle sized
- Option 2 (second phase)
 - Assuming significant channel erosion is identified through CONCEPTS/AGNPS modeling, incorporate channel erosion component in watershed model

Erosion and Sediment Processes

- Pervious land areas
 - Erosion is a function of land use activity, soil characteristics, slope, land cover, and precipitation
 - Erosion occurs due to rainfall "energy"
 - Detachment of soil particles
 - Washoff of detached material

Sediment Processes

Sediment Budget and Transport

- Land Processes
 - Production and removal of sediment from land
 - Washoff of loose sediment
 - Scouring of soil matrix
- Stream Channel Processes
 - Transport, deposition and scour of sediment in the stream channels

Nutrient Model Development

TASK	20	2002		20	003		2004				2005			
	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
3. Nutrient Model Development											M ASS		3	1997
3.1 Data Compilation			31						1	Take				2473
3.2 Model Formulation Selection			1	450			100	4416	7 8	HAR				
3.3 Calibration			***									Mossill.		

Key considerations and data needs:

- Groundwater baseflow concentrations
- Land use specific nutrient information

Overland Water Quality Processes

Urban Land Units

- Impervious areas
 - Dust and dirt build-up functions
- Pervious areas
 - Dissolved pollutants with runoff
 - Erosion and adsorbed pollutants with sediment

Rural Land Units

- Erosion and adsorbed pollutants with sediment
- Dissolved pollutants with runoff

Overland General Quality (Rainfall-driven processes)

Build-upWashoff

Constituent Build-up

- Accumulation at a constant rate for a constituent
- Computed at daily time interval
 - ① Build up
 - ② Washoff

Time

Change of storage with time

In-stream Simulation of Generalized Quality Constituent

- Simulates dissolved and sediment associated general quality constituents
- Processes applicable to dissolved general quality constituents include:
 - Advection of dissolved material (dominant process in the watershed)
 - Decay processes (1st order decay used to represent net nutrient losses attributed to settling, transformations, etc.)

Model Refinement and Verification

TASK	2002			20	03			20	04		2005			
	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
5. Model Refinement and Verification												3		
5.1 Model Refinement - Nutrients			M						1600	300		Gyn	- Me	47
5.2 Model Refinement - BMPs			N. 75-68	100	- 4-11		100		(B) (AAR				
5.3 Verification		L.	-	Est.			MEN B							

Sediment Load Estimation Update

- Incorporate CONCEPTS/AGNPS results using stream reconnaissance:
 - Explicit simulation of channel erosion processes, e.g. extend CONCEPTS model to simulate all remaining streams in the basin or incorporate CONCEPTS algorithms into LSPC
 - Empirical formulations using CONCEPTS
 results, e.g. application of derived rating curves

Reconciliation with Statistical Analysis...Options

- Selected replacement of HSPF sediment and nutrient loading algorithms with statisticallyderived equations
- Application of statistically derived EMCs or landuse-based rating curves to watershed modelpredicted flows
- Use statistical results as a confirmation/validation tool for the watershed model

Data Needs:

- Monitoring site delineations
- Lake Tahoe subwatershed delineations

5 Urban

4 Rural

Data Needs:

- Monitoring site delineations
- Lake Tahoe subwatershed delineations

5 Urban

4 Rural

Watershed Model Results

- Reach Output
 - Hourly flow and nutrient concentrations at downstream end of each reach
 - Cumulative results
- Land Unit Output
 - Hourly flow and nutrient loads for each land unit in each watershed
 - Evaluate contributions at the source level

TMDL Analysis Considerations

Allocation Steps

TMDL Analysis Considerations

